Power Electronics Projects

I. POWER ELECTRONICS based MULTI-PORT SYSTEMS


2. Full Bridge Three-Port Converter Based on Bridgeless Boost Rectifier and Bidirectional Converter for Multiple Energy Interface. (IEEE 2016)


II. POWER ELECTRONICS based RENEWABLE ENERGY

1. High-Gain Single-Stage Boosting AC to DC Conversion for Photovoltaic Applications. (IEEE 2016)


3. A Medium Frequency Transformer-Based Wind Energy Conversion System Used for CSC Based Offshore Wind Farm. (IEEE 2016)


III. POWER ELECTRONICS based CONVERTERS

4. Buck-Boost Converters Based on Semi active Rectifiers for High-Output Voltage Applications. (IEEE 2016)
5. A Sensitivity-Improved PFM LLC Resonant Full Bridge Boost Converter with LC opposed Resonant Circuitry. (IEEE 2016)
7. Multi-input boost Converters Based on the Switched-Diode-Capacitor Voltage Accumulator. (IEEE 2016)

IV. POWER ELECTRONICS based POWER FACTOR CORRECTION CONVERTER

1. LCL Filter Design for Power Factor Correction using Line Impedance Stabilization Network. (IEEE 2016)
2. Control of a Three-Phase Boost Power Factor Correction Rectifier. (IEEE 2016)
3. A bidirectional single-stage Rectifier with high-frequency Isolation and power factor Correction. (IEEE 2016)
4. Bumpless Control for Reduced harmonic Distortion in Power Factor Correction Circuits. (IEEE 2016)
V. POWER ELECTRONICS based INVERTERS

2. Simulate Hybrid Modulation Scheme for a High-Frequency AC-Link Inverter. (IEEE 2016)
5. A Zero Voltage Source Grid-Connected Full-Bridge Inverter with a Novel ZVS SPWM Scheme. (IEEE 2016)
7. Analysis of Three-Phase Split-Source Inverter (SSI). (IEEE 2016)
8. PWM Technique for High Voltage Gain Operation of Three-Phase Z-Source Inverters. (IEEE 2016)

VI. POWER ELECTRONICS based MULTILEVEL INVERTERS

1. A Family of multilevel Dual-Buck Full-Bridge Inverters for Grid-Tied Applications. (IEEE 2016)
3. An Enhanced Single Phase Boost Five-Level Inverter. (IEEE 2016)
4. A New Cascaded Inverter Based on Improved Series– Parallel Conversion with Less Number of Components. (IEEE 2016)
5. Design a Novel Multilevel DC–AC Inverter. (IEEE 2016)